top of page
Carbon Rivers Nano White Logo TM.png

About CR Nano and Mission

Carbon Rivers Nano is founded by engineers and scientists, headquartered in Knoxville, TN. We maintain and cherish our deep relationship with East Tennessee industry partners and regional research institutions to provide innovative products, ideas, and solutions for automotive, energy, safety and security industries in both the public and private sector.

We develop and commercialize technologies such as:

  • Advanced Materials for Aerospace and EV Vehicles  

  • Next-Generation Industrial and Infrastructure Building Materials 

  • Applications for the US Grid and Transmission Cable Industry 

  • Additive Manufacturing for Commercial 3D Printing 

  • Climate Friendly Coatings for Maritime and Oil / Gas Industries

  • Elastomer and Rubber Applications with Increased Fatigue Life and Durability

The CR Nano mission is to be disruptors on a global scale for advanced materials and sustainable energy technologies. Like having polymer composites in the bronze age, CR Nano has the future climate and industrial solutions for today. 

Pristine Graphene

Carbon Rivers is the largest source of pristine graphene (1-3 layers with no defects or functional groups) in the world. Carbon Rivers' pristine graphene is used in everything from EV batteries, construction materials, metals, and fuel cells to smart textiles, lubricants, plastics, and specialized coatings. The large surface area of the nanoplatelets (up to 250 m2/g and 1 atom thick) is excellent for electrical conductivity and thermal dissipation. PG nanoplatelets are also hydrophobic, UV resistant, anti-corrosion, fire resistant, and anti-abrasion.

 

We can supply any volume in metric tonnes to global partners and consult on applications and advances in materials. 

What is Graphene?

Is Graphene All the Same?

MECHANICAL

Graphene’s stiffness and tensile strength is similar to other forms of carbon such as diamond (150,000,000 psi). Based on these properties and dimensions, graphene has a strength 100-times that of steel.

CONDUCTIVITY

Graphene is the most efficient thermal conductor, ten times that of silver

(the most conductive metal), and four times better than diamond (the best-known material prior to graphene). Graphene’s electric conductivity has the lowest resistance at room temperature and has a high electron mobility. Graphene is special because its closest peers in terms of conductivity are precious metals. Graphene’s room temperature carrier density is 1,000,000 times greater than copper, and its electron mobilities are 1,000 times greater than silicon.

SCALE

Adding small amounts of graphene to other materials can dramatically alter the characteristics of a material. This means that consumer products can be completely transformed by adding a minimal amount of graphene. For a virtually no cost, a materials’ performance can be significantly improved. However, handling the material correctly is the key to achieving optimal performance value.

HOW MANY LAYERS?

Researchers have discovered that one to three layers of graphene produce optimal mechanical properties. According to industry standards, materials that are 10 layers or less are considered quality graphene.

WHAT ARE THE DEFECTS?

Defects are holes or tears that decrease the properties of the material by orders of magnitude. Pristine graphene does not possess these defects. Materials like graphene oxide (GO), reduced graphene oxide (rGO), and chemical vapour deposition (CVD) are inherently different manufacturing processes from pristine graphene.

Graphene is a crystalline allotrope (arrangement) of carbon atoms. Graphene is a single, one-atom thick layer of graphite (like pencil lead). Graphite consists of thousands of layers of graphene. Think of graphite as a thick book, then graphene would be just one single page removed from that book. The carbon atoms are arranged like the points of a hexagon. At each corner is a single carbon atom. Using graphene today is like having stainless steel in the bronze age.

If Graphene was Discovered in 2004, Then Why Isn't it Everywhere?

SCARCITY

It is extremely difficult to make graphene between one and three layers thick. There is currently only one company able to produce 1-3-layer graphene without defects in commercially viable quantities. ACCR can currently produce and sell a graphene nanoplatelet powder that consists of primarily one to three-layer, pristine graphene nanosheets at a commercially viable scale. We can provide more than 120 tons per month.

PRICING

Prior to now, the cost to produce pristine graphene has made it cost-prohibitive to produce it on a commercial scale. ACCR can now sell graphene at a commercially viable price.

INCONSISTENCY

There are companies who claim to produce graphene in commercially viable volumes, but they are selling GO, rGO, or high-layer count graphene that is not as effective. Because of loosely enforced industry standards for graphene, these companies can call their products graphene even though it does not have the same characteristics. The problem is that there are so many companies selling GO or rGO as graphene which is clouding the perception of graphene. Companies are purchasing GO and rGO to put in their products (thinking it is graphene), and they are not seeing the results that graphene researchers are seeing in their labs. Meanwhile, the companies that are using high-quality graphene are seeing amazing results.

Graphene Enhanced Applications

bottom of page